Гідрологія, гідрохімія і гідроекологія

Hydrology, hydrochemistry and hydroecology

KRAINYK S.V., SAVENETS M.V.CHANGES IN ATMOSPHERIC AEROSOL PARAMETERS DUE TO THE DUST EMISSION FROM THE DRAINED AREAS OF THE KAKHOVKA RESERVOIR

DOI: https://doi.org/10.17721/2306-5680.2024.1.8

Hydrology, Hydrochemistry and Hydroecology. 2024. № 1 (71)
Publication language: Ukrainian
Authors:
Krainyk S.V., Taras Shevchenko National University of Kyiv, Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv Savenets M.V., Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv

The article presents main changes in atmospheric aerosol parameters due to the dust emission from the drained areas of the Kakhovka Reservoir and confirms the formation of a new source of aerosol pollution. The research was conducted using data on aerosol optical depth (AOD), Angstrom exponent, and aerosol mass fraction from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument with support from LandSat satellite underlay surface images. An increase in AOD over the reservoir was established, resulting in a less pronounced change (-15%) during the fall compared to the regional background decrease of 50%. An increase in the aerosol mass fraction over the drained areas of the Kakhovka Reservoir was identified to be at least twice as much. Changes in the Angstrom exponent were identified, indicating a redistribution of the predominant size of aerosol particles in the atmospheric air. The frequency of cases with a predominance of the coarse fraction increased, while that of the fine fraction decreased. However, due to similar trends across the entire left bank of the Kherson region, it is currently impossible to be certain about the defining role of drying. At the same time, two indicators of changes in the Angstrom exponent suggest a shift in the size distribution of aerosol particles after the dam breach: an increased frequency of cases with an Angstrom exponent within 0.5-1.0, approaching the values over the Oleshky Sands; and a decrease in the frequency of cases with a predominance of the fine particles in October, unlike other territories. We emphasized the need for further monitoring of dust emissions into the atmosphere and modifications to emission inventories from natural sources for numerical atmospheric modeling purposes.

Keywords: aerosol, optical depth, Angstrom exponent, remote sensing, MODIS.

References:
1.  Komentari chleniv Robochoyi grupy NAN Ukrainy z analizu naslidkivruinuvannia grebli Kahovskoyi GES. Natsionalna Akademiya Nauk Ukrainy [“Comments from the members of the Working Group of the National Academy of Sciences of Ukraine on the analysis of the consequences of the destruction of the dam of the Kakhovka Hydroelectric Power Station. National Academy of Sciences of Ukraine.]. URL: https://www.nas.gov.ua/UA/Messages/Pages/View.aspx?MessageID=10359 (Accessed: 21.01.2024).
2.  Aditi, K., Singh, A., Banerjee, T. Retrieval uncertainty and consistency of Suomi-NPP VIIRS Deep Blue and Dark Target aerosol products under diverse aerosol loading scenarios over South Asia. Environmental Pollution. 2023. Vol. 331: 121913. https://doi.org/10.1016/j.envpol.2023.121913
3.  Aili, A., Xu, H., Kasim, T., Abulikemu, A. Origin and Transport Pathway of Dust Storm and Its Contribution to Particulate Air Pollution in Northeast Edge of Taklimakan Desert, China. Atmosphere. 2021. Vol. 12:113. https://doi.org/10.3390/atmos12010113
4.  Alperr P., Ganor, E. Sahara mineral dust measurements from TOMS: Comparison to surface observations over the Middle East for the extreme dust storm, March 14-17, 1998. Journal of Geophysical Research. 2001. Vol. 106, No. D16. P. 18.275-18.286.
5.  Baddock, M. C., Bullard, J.E., Bryant, R.G. Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing of Environment. 2009. Vol. 113, Is. 7. P. 1511-1528. https://doi.org/10.1016/j.rse.2009.03.002
6.  Baddock M.C., Bryant, R. G., Acosta, M.D., Gill, T.E. Understanding dust sources through remote sensing: Making a case for CubeSats. Journal of Arid Environments. 2021. Vol. 184:104335. https://doi.org/10.1016/j.jaridenv.2020.104335
7.  Banks, J.R., Brindley, H.E. Evaluation of MSG-SEVIRI mineral dust retrieval products over North Africa and the Middle East. Remote Sensing of Environment. 2013. Vol. 128. P. 58-73. https://doi.org/10.1016/j.rse.2012.07.017
8.  Cho, H., Nasiri, S. L., Yang, P., Laszlo, I., Zhao, X. Detection of Optically Thin Mineral Dust Aerosol Layers over the Ocean Using MODIS. J. Atmos. Oceanic Technol. 2013. Vol. 30. P. 896–916. https://doi.org/10.1175/JTECH-D-12-00079.1 
9.  Contini, D., Lin, Y.-H., Hänninen, O., Viana, M. Contribution of Aerosol Sources to Health Impacts. Atmosphere. 2021. Vol. 12:730. https://doi.org/10.3390/atmos12060730
10. Eck, T. F., Holben B. N., Reid, J.S., et al. Wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols. J. Geophys. Res. 1999. Vol. 104. P. 31333-31350. https://doi.org/10.1029/1999JD900923
11. Kok, J. F., Adebiyi, A. A., Albani, S., et al. Contribution of the world’s main dust source regions to the global cycle of desert dust. Atmos. Chem. Phys. 2021. Vol. 21. P. 8169–8193. https://doi.org/10.5194/acp-21-8169-2021
12. Laid to waste. Ukrainian scientists are tallying the grave environmental consequences of the Kakhovka Dam disaster. Science. URL: https://www.science.org/content/article/ukrainian-scientists-tally-grave-environmental-consequences-kakhovka-dam-disaster (Last accessed: 21.01.2024)
13. Levy, R., Hsu, C., et al. MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System. Goddard Space Flight Center, USA. 2015. http://dx.doi.org/10.5067/MODIS/MOD04_L2.061
14. Parajuli, S. P., Jin, Q., Francis, D. Editorial: Atmospheric dust: How it affects climate, environment and life on Earth? Front. Environ. Sci. 2022. Vol. 10:1058052 https://doi.org/10.3389/fenvs.2022.1058052
15. Prospero J. M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. PNAS. 1999. Vol. 96, No. 7. P.  3396-3403. https://doi.org/10.1073/pnas.96.7.3396
16. Romano, F., Ricciardelli, E., Cimini, D., Di Paola, F., Viggiano, M. Dust Detection and Optical Depth Retrieval Using MSG‑SEVIRI Data. Atmosphere. 2013, Vol. 4. P. 35-47. https://doi.org/10.3390/atmos4010035
17. Wang, X., Cai, D., Li, D., Lou, J., Zheng, Y., Hu S., Liu, F. Dust deposition and its significance to soil nutrients in the Otindag Desert, China. Journal of Arid Environments. 2021. Vol. 194, 104612. https://doi.org/10.1016/j.jaridenv.2021.104612
18. Zhang, H., Ciren, P., Kondragunta, Sh., Laszlo, I. Evaluation of VIIRS dust detection algorithms over land. Journal of Applied Remote Sensing. 2018. Vol. 12, Is. 4: 042609. https://doi.org/10.1117/1.JRS.12.042609

READ THE FULL ARTICLE

HOW TO CITE

Krainyk, S.V., Savenets, M.V. (2024). Changes in atmospheric aerosol parameters due to the dust emission from the drained areas of the Kakhovka Reservoir. Hidrolohiia, hidrokhimiia i hidroekolohiia [Hydrology, Hydrochemistry and Hydroecology], 1(71), 85-95 (in Ukrainian, abstr. in English). https://doi.org/10.17721/2306-5680.2024.1.8