SIDENKO, V.P. CLIMATIC STUDIES OF EXTREME WEATHER CONDITIONS, EVENTS AND PHENOMENA IN UKRAINE AND THE WORLD
DOI: https://doi.org/10.17721/2306-5680.2022.2.5
Hydrology, Hydrochemistry and Hydroecology. 2022. № 2 (64)
Publication language: Ukrainian
Authors:
Sidenko, V.P., Ukrainian Hydrometeorological Institute of the National Academy of Sciences of Ukraine and the State Service Emergencies of Ukraine, Kyiv
The analysis of literature of the modern world and national publications in which methods of research of climate extreme events are presented was conducted. The focus is on the climatological aspects of extreme climatic / weather events and phenomena. A comparison of English-language basic terms and concepts used in the study of climatic / weather extreme events and their definitions with their Ukrainian counterparts is presented as well as the definition of specific concepts according to the sources in which they are presented. Not all terms and concepts used in scientific publications have clear and strict definitions and are not always consistent with each other. Due to differences in approaches to the definition of terms and concepts, not all of them can be found an exact match in another language.
Types of source databases with different spatiotemporal resolution and sets of meteorological parameters are presented. Classification of research on extremity by study domain, time period of research, data spatial-temporal resolution, a set of meteorological quantities and climate extreme indices on the basis of which the studies was conducted. The analysis of modern research of extreme events of climate / weather in Ukraine is carried out. Current research on this issue in Ukraine focuses on the number and frequency of extreme weather events. Main trends in research of extreme climatic / weather events in the world were examined. Global studies of climate extremity are performed according to a more complex procedure. They are based on long time series of quality-tested data that have been homogenized because non-homogenized series can severely distort the real picture (quantitative information) of the duration, intensity or number of extreme climatic / weather events.
Further plan for the study of modern climate change in the extreme climate of Ukraine on the basis of long series of daily values of average, maximum and minimum surface air temperatures and precipitation was drawn.
Keywords: extreme weather events, climate extreme indices, climate change, meteorological variables.
References:
1. Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G.-K. ., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P., Trewin, B., Achutarao, K., Adhikary, B., Allan, R., Armour, K. and Bala, G. Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary. 2021. [online] elib.dlr.de. DOI: https://elib.dlr.de/137584/
2. Stephenson D. B. Definition, diagnosis, and origin of extreme weather and climate events. Climate Extremes and Society / ed. by H. F. Diaz, R. J. Murnane. Cambridge. P. 11–23. DOI: https://doi.org/10.1017/cbo9780511535840.004
3. Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.
4. Nastanova z operatyvnoi hidrolohii. Prohnozy rezhymu vod sushi. Hidrolohichne zabezpechennia i obsluhovuvannia [Guidelines for operational hydrology. Forecasts of the land water regime. Hydrological support and maintenance] / Kerivnyi dokument. Kyiv: Ukrainskyi hidrometeorolohichnyi tsentr, 2012. 120 s.
5. Field, C.B. and IPCC (2012). Managing the risks of extreme events and disasters to advance climate change adaption: special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
6. IPCC, 2012: Glossary of terms. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 555-564.
7. IPCC, 2012: Summary for Policymakers. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 3-21.
8. WMO. International Meteorological Vocabulary. 2nd ed. Secretariat of World Meteorological Organization, 1992. 784 p.
9. AMS, 2000: AMS Glossary of Meteorology, 2nd Edition. American Meteorological Society, Boston, MA. http://amsglossary.allenpress.com/glossary/browser.
10. Khromov, S. P. Meteorolohycheskyi slovar [Meteorological dictionary] / S. P. Khromov, L. Y. Mamontova. – Yzd. 3-e, pererab. y dop. – Lenynhrad : Hydrometeoyzdat, 1974. – 568 s.
11. Klimatolohiia. Terminy ta vyznachennia osnovnykh poniat [Climatology. Terms and definitions of basic concepts]. – DSTU 3992 – 2000. – Kyiv: Derzhstandart Ukrainy, 2001. – 40 s.
12. Stocker, T., Qin, D., Plattner, G.-K., On, P. and Al, E. Climate change 2013: the physical science basis: working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, Cop. 2014.
13. IPCC Climate change 2014: mitigation of climate change: Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, Ny: Cambridge University Press. 2014.
14. Razafimaharo, C., Krähenmann, S., Höpp, S., Rauthe, M. and Deutschländer, T. New high-resolution gridded dataset of daily mean, minimum, and maximum temperature and relative humidity for Central Europe (HYRAS). Theoretical and Applied Climatology. 2020. №. 142. P. 1531-1553 DOI: https://doi.org/10.1007/s00704-020-03388-w
15. Dunn, R.J.H., Alexander, L.V., Donat, M.G., Zhang, X., Bador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A.A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., Guzman, R., Htay, T.M., Wan Ibadullah, W.M. and Bin Ibrahim, M.K.I. Development of an updated global land in situ based data set of temperature and precipitation extremes: HadEX3. Journal of Geophysical Research: Atmospheres. 2020. Vol. 125. №. 16. DOI: https://doi.org/10.1029/2019jd032263
16. Xu, W., Li, Q., Wang, X.L., Yang, S., Cao, L. and Feng, Y. Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. Journal of Geophysical Research: Atmospheres. 2013. Vol. 118. №. 17. P. 9708-9720. DOI: https://doi.org/10.1002/jgrd.50791
17. Brown, P. J., Bradley, R.S., and Keimig, F.T. Changes in extreme climate indices for the Northeastern United States, 1870–2005. Journal of Climate. 2010. №. 23(24). P. 6555–6572. DOI: https://doi.org/10.1175/2010jcli3363.1
18. Di Bacco, M., Scorzini, A.R. Recent changes in temperature extremes across the north-eastern region of Italy and their relationship with large-scale circulation. Climate Research. 2020. №. 81. P. 167-185. DOI: https://doi.org/10.3354/cr01614
19. Avila-Diaz, A., Abrahão, G., Justino, F., Torres, R., and Wilson, A. Extreme climate indices in Brazil: Evaluation of downscaled Earth system models at high horizontal resolution. Climate Dynamics. 2020. №. 54. P. 5065-5088. DOI: https://doi.org/10.1007/s00382-020-05272-9
20. Dobrinescu, A., Busuioc, A., Bîrsan, M. V., Ştefan, S., and Orzan, A. Spatial and temporal variability of the thermal stress index in Romania. EGU General Assembly. 2013. Vienna, Austria. EGU 2013–11217. №. 15.
21. Dima A., Busuioc A., Dumitrescu, A. Changes in summer thermal stress index in Romania using a statistical downscaling model. 16th EMS Annual Meeting & 11th European Conference on Applied Climatology (ECAC). 2016. Trieste, Italy.
22. Peña-Angulo, D., Reig-Gracia, F., Domínguez-Castro, F., Revuelto, J., Aguilar, E., van der Schrier, G., Vicente-Serrano, S.M. ECTACI: European climatology and trend atlas of climate indices (1979–2017). Journal of Geophysical Research: Atmospheres. 2020. 2020. Vol. 125. №. 16. DOI: https://doi.org/10.1029/2020jd032798.
23. Cardell, M.F., Amengual, A., Romero, R., Ramis, C. Future extremes of temperature and precipitation in Europe derived from a combination of dynamical and statistical approaches. International Journal of Climatology. 2020. Vol. 40. №. 11. P. 4800–4827. DOI: https://doi.org/10.1002/joc.6490
24. Fathian, F., Ghadami, M., Haghighi, P., Amini, M., Naderi, S. and Ghaedi, Z. Assessment of changes in climate extremes of temperature and precipitation over Iran. Theoretical and Applied Climatology. №. 141. P. 1119–1133. DOI: https://doi.org/10.1007/s00704-020-03269-2
25. Yosef Y., Aguilar E., Alpert, P. Changes in extreme temperature and precipitation indices: Using an innovative daily homogenized database in Israel. International Journal of Climatology. 2019. Vol. 39, №. 13. P. 5022–5045. DOI: https://doi.org/10.1002/joc.6125
26. Sensoy, S., Demircan, M. and Alan, I. Trends in Turkey Climate Extreme Indices from 1971 to 2004. BALWOIS. 2008. Ohrid, Republic of Macedonia. 27 – 31 May 2008.
27. Fessehaye, M., Brugnara, Y., Savage, M.J. and Brönnimann, S. A note on air temperature and precipitation variability and extremes over Asmara: 1914–2015. International Journal of Climatology. 2019. №. 39(14). P. 5215–5227. DOI: https://doi.org/10.1002/joc.6134
28. RClimDex. Github. URL: https://github.com/ECCC-CDAS/RClimDex.
29. M. Iturbide, J. Bedia, S. Herrera, J. Baño-Medina, J. Fernández, M.D. Frías, R. Manzanas, D. San-Martín, E. Cimadevilla, A.S. Cofiño and JM Gutiérrez. The R-based climate4R open framework for reproducible climate data access and post-processing. Environmental Modelling & Software. 2019. №. 111. P. 42-54. DOI: /10.1016/j.envsoft.2018.09.009
30. Klein Tank, A. M. G., Können, G. P. Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–99. Journal of Climate. 2003. Vol. 16. №. 22. P. 3665–3680. DOI: https://doi.org/10.1175/1520-0442(2003)016%3C3665:tiiodt%3E2.0.co;2
31. Filahi, S., Tanarhte, M., Mouhir, L., El Morhit, M. and Tramblay, Y. Trends in indices of daily temperature and precipitations extremes in Morocco. Theoretical and Applied Climatology. 2015. №. 124(3-4), P. 959–972. DOI: https://doi.org/10.1007/s00704-015-1472-4
32. Klein Tank, A.M.G., Peterson, T.C., Quadir, D.A., Dorji, S., Zou, X., Tang, H., Santhosh, K., Joshi, U.R., Jaswal, A.K., Kolli, R.K., Sikder, A.B., Deshpande, N.R., Revadekar, J.V., Yeleuova, K., Vandasheva, S., Faleyeva, M., Gomboluudev, P. , Budhathoki, K. P., Hussain, A. and Afzaal, M. Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research. 2006 №. 111(D16). P. 1-8. DOI: https://doi.org/10.1029/2005JD006316
33. Keggenhoff, I., Elizbarashvili, M., Amiri-Farahani, A. and King, L. Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather and Climate Extremes. 2014. №. 4. P. 75–85. DOI: https://doi.org/10.1016/j.wace.2014.05.001
34. Tencer, B., Weaver, A. and Zwiers, F. Joint Occurrence of Daily Temperature and Precipitation Extreme Events over Canada. Journal of Applied Meteorology and Climatology. 2014. №. 53(9). P. 2148–2162. DOI: https://doi.org/10.1175/JAMC-D-13-0361.1
35. Toll, V. and Post, P. Daily temperature and precipitation extremes in the Baltic Sea region derived from the BaltAn65+ reanalysis. Theoretical and Applied Climatology. 2017. №. 132(1-2). P. 647–662. DOI: https://doi.org/10.1007/s00704-017-2114-9
36. Powell, E.J. and Keim, B.D. Trends in Daily Temperature and Precipitation Extremes for the Southeastern United States: 1948–2012. Journal of Climate. 2015. №. 28(4). P. 1592–1612. DOI: https://doi.org/10.1175/JCLI-D-14-00410.1
37. Moberg, A., Jones, P. D., Lister, D., Walther, A., Brunet, M., Jacobeit, J., Alexander, L.V., Della-Marta, P. M., Luterbacher, J., Yiou, P. , Chen, D., Klein Tank, A.M.G., Saladié, O., Sigró, J., Aguilar, E., Alexandersson, H., Almarza, C., Auer, I., Barriendos, M. and Begert, M. Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. Journal of Geophysical Research. 2006. №. 111(D22). P. 1-25. DOI: https://doi.org/10.1029/2006JD007103
38. Bohushenko, A., Stepanenko, S., and Khomenko, I. Detecting climate change in Ukraine: trends, prediction and extreme events. EGU General Assembly, online, 19–30 Apr 2021, EGU21-6197, DOI: https://doi.org/10.5194/egusphere-egu21-6197
39. Skrynyk O.A., Osadchyi V.I., Sidenko V.P., Boichuk D.O., Oshurok D.O., Skrynyk O.Ia. Homohenizovana baza danykh dovhykh chasovykh riadiv serednoi misiachnoi temperatury [Homogenized database of long time series of average monthly temperature]. Heoinformatyka. 2018. №. 1. S. 54-68.
40. Skrynyk O.A., Boichuk D.O., Sidenko V.P. Vyiavlennia ta usunennia klimatolohichnoi neodnoridnosti u chasovykh riadakh klimatolohichnykh pokaznykiv [Detection and removal of climatological inhomogeneities in time series of climatological indicators]. Hidrolohiia, hidrokhimiia i hidroekolohiia. 2019. №. 2 (53). S. 88-100.
41. Skrynyk O, Aguilar E, Skrynyk O, Sidenko V, Boichuk D, Osadchyi V. Quality control and homogenization of monthly extreme air temperature of Ukraine. International Journal of Climatology. 2019. №. 39 P. 2071–2079. DOI: https://doi.org/10.1002/joc.5934
42. Expert Team on Climate Change Detection and Indices (ETCCDI). World Climate Research Programme. URL: https://www.wcrp-climate.org/etccdi
43. The list of 27 climate extremes indices. Climdex. URL: https://www.climdex.org/learn/indices/
44. Savchuk, S. V., Yuvchenko, N. M., Tymofieiev, V. Ye. Raionuvannia Ukrainy po vplyvu ekstremalnykh znachen maksymalnoi temperatury povitria u teplyi ta kholodnyi periody roku [Zoning of Ukraine according to the influence of extreme values of the maximum air temperature in the warm and cold seasons]. Ukrainskyi hidrometeorolohichnyi zhurnal. 2018. №. 22. S. 46-56.
45. Savchuk S.V., Tymofeiev V.Ie., Shchehlov O.A., Artemenko V.A., Kozlenko I.L. Koreliatsiinyi zviazok mizh meteorolohichnymy velychynamy pry ekstremalnykh znachenniakh maksymalnoi temperatury povitria [Correlation between meteorological values at extreme values of maximum air temperature]. Hidrolohiia, hidrokhimiia i hidroekolohiia. 2020. №. 1(56). C. 101–112. DOI: https://doi.org/10.17721/2306-5680.2020.1.11.
46. Extreme Weather Events in Ukraine: Occurrence and Changes / V. Balabukh et al. Extreme Weather. 2018. DOI: https://doi.org/10.5772/intechopen.77306
47. Umanska, O. V., Borovska, H. O., Khokhlov, V. M. Vplyv synoptychnoi sytuatsii na vynyknennia spekotnykh ta kholodnykh pohodnykh umov v Ukraini [Influence of the synoptic situation on the occurrence of hot and cold weather conditions in Ukraine]. Ukrainskyi hidrometeorolohichnyi zhurnal. 2019. №. 24. S. 33-40.
48. Piasetska S.I., Hrebeniuk N.P., Savchuk S.V. Vyznachennia koreliatsiinoho zviazku mizh okremymy meteorolohichnymy velychynamy u daty pochatku vidkladennia ozheledi na terytorii Ukrainy po misiatsiakh kholodnoho periodu roku protiahom 2001-2013 rr. ta yikh prostorovyi rozpodil [Determination of the correlation between individual meteorological quantities at the date of the beginning of ice deposition on the territory of Ukraine by months of the cold period of the year during 2001-2013 and their spatial distribution]. Hidrolohiia, hidrokhimiia i hidroekolohiia, 2019. №. 4(55). C. 140-151. DOI: https://doi.org/10.17721/2306-5680.2019.4.12.
49. Shevchenko O., Snizhko S., Oliinyk R., Kostyrko I. Indykatory temperaturnykh anomalii rehionalnoho klimatu [Indicators of temperature anomalies of regional climate]. Heohrafiia. 2018. №. 4(73) S. 15-19.
50. Lipinskyi V.M., Osadchyi V.I., Babichenko V.M. Aktyvizatsiia stykhiinykh meteorolohichnykh yavyshch na terytorii Ukrainy – proiav hlobalnykh zmin klimatu [Intensification of natural meteorological phenomena on the territory of Ukraine is a manifestation of global climate change]. Ukrainskyi heohrafichnyi zhurnal. 2007. №. 2. S. 11-20.
51. Osadchyi V.I., Babichenko V.M. Dynamika stykhiinykh meteorolohichnykh yavyshch v Ukraini [Dynamics of natural meteorological phenomena in Ukraine]. Ukrainskyi heohrafichnyi zhurnal. 2012. №. 4. S. 8-14.
52. Stykhiini meteorolohichni yavyshcha na terytorii Ukrainy za ostannie dvadtsiatyrichchia (1986 – 2005rr.) [Natural meteorological phenomena on the territory of Ukraine for the last twenty years (1986 – 2005)] / Za red. V.M. Lipinskoho, V.I. Osadchoho, V.M.Babichenko. – K.: Vyd-vo “Nika-Tsentr”, 2006. – 312 s
53. Shevchenko O.H., Snizhko S.I. Khvyli tepla ta osnovni metodolohichni problemy, shcho vynykaiut pry yikh doslidzhenni [Heat waves and the main methodological problems that arise in their study.]. Ukrainskyi hidrometeorolohichnyi zhurnal. 2012. №. 10. S. 57-63.
54. Shevchenko, O., Lee, H., Snizhko, S., Mayer, H. Long-term analysis of heatwaves in Ukraine. International Journal of Climatology. 2014, №. 34. P. 1642-1650 DOI: https://doi.org/10.1002/joc.3792
55. Shevchenko, O., Oliinyk, R., Snizhko, S., Svintsitska, H., Kostyrko, I. Indexing of Heatwaves in Ukraine. Water. 2020. №. 12(4):962. DOI: https://doi.org/10.3390/w12040962
56. V.F. Martazynova. Neustoichyvost sutochnoi temperatury vozdukha letneho sezona s nachala XXI veka po dannym nabliudenyi na meteostantsyi Kyiv [Instability of the daily air temperature of the summer season since the beginning of the twentieth century according to observations at the Kiev weather station]. Ukrainskyi heohrafichnyi zhurnal. 2019. № 3. S. 15–21. DOI: https://doi.org/10.15407/ugz2019.03.015
57. Skrynyk, O., Aguilar, E., Guijarro, J., Randriamarolaza, L.Y.A. and Bubin, S. Uncertainty evaluation of Climatol’s adjustment algorithm applied to daily air temperature time series. International Journal of Climatology. 2020. №. 41(S1). DOI: https://doi.org/10.1002/joc.6854
58. Hollis, D., McCarthy, M., Kendon, M., Legg, T. and Simpson, I. (2019). HadUK‐Grid—A new UK dataset of gridded climate observations. Geoscience Data Journal, №. 6(2). P.151–159. DOI: https://doi.org/10.1002/gdj3.78
59. Frick, C., Steiner, H., Mazurkiewicz, A., Riediger, U., Rauthe, M., Reich, T. and Gratzki, A. Central European high-resolution gridded daily data sets (HYRAS): Mean temperature and relative humidity. Meteorologische Zeitschrift. 2014. №. 23(1). P.15–32. DOI: http://dx.doi.org/10.1127/0941-2948/2014/0560
60. Jacobeit, J., Rathmann, J., Philipp, A. and Jones, P.D. Central European precipitation and temperature extremes in relation to large-scale atmospheric circulation types. Meteorologische Zeitschrift. 2009 №. 18(4). P.397–410. DOI: http://dx.doi.org/10.1127/0941-2948/2009/0390
61. Iannuccilli, M., Bartolini, G., Betti, G., Crisci, A., Grifoni, D., Gozzini, B., Messeri, A., Morabito, M., Tei, C., Torrigiani Malaspina, T., Vallorani, R. and Messeri, G. Extreme precipitation events and their relationships with circulation types in Italy. International Journal of Climatology. 2021. №. 41(10). P.4769–4793. DOI: https://doi.org/10.1002/joc.7109
62. Bieniek, P.A. and Walsh, J.E. (2017). Atmospheric circulation patterns associated with monthly and daily temperature and precipitation extremes in Alaska. International Journal of Climatology. №. 37. P.208–217. DOI: https://doi.org/10.1002/joc.4994
63. Yin, H., Donat, M.G., Alexander, L.V. and Sun, Y. Multi-dataset comparison of gridded observed temperature and precipitation extremes over China. International Journal of Climatology. 2014. №. 35(10). P.2809–2827. DOI: https://doi.org/10.1002/joc.4174
64. Frich, P., Alexander, L., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A. and Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research. 2002. №. 19. P.193–212. DOI: https://doi.org/10.3354/cr019193
65. Zhang, X., Aguilar, E., Sensoy, S., Melkonyan, H., Tagiyeva, U., Ahmed, N., Kutaladze, N., Rahimzadeh, F., Taghipour, A., Hantosh, T.H., Albert, P., Semawi, M., Karam Ali, M., Said Al-Shabibi, M.H., Al-Oulan, Z., Zatari, T., Al Dean Khelet, I., Hamoud, S., Sagir, R. and Demircan, M. Trends in Middle East climate extreme indices from 1950 to 2003. Journal of Geophysical Research. 2005. №. 110(D22). DOI: https://doi.org/10.1029/2005JD006181
66. Aguilar, E., Aziz Barry, A., Brunet, M., Ekang, L., Fernandes, A., Massoukina, M., Mbah, J., Mhanda, A., do Nascimento, D.J., Peterson, T.C., Thamba Umba, O., Tomou, M. and Zhang, X. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. Journal of Geophysical Research. 2009. №. 114(D2). DOI: https://doi.org/10.1029/2008JD011010
67. Brázdil, R., Demarée, G.R., Kiss, A., Dobrovolný, P., Chromá, K., Trnka, M., Dolák, L., Řezníčková, L., Zahradníček, P., Limanowka, D. and Jourdain, S. The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements. 2019. Climate of the Past. №. 15(5). P.1861–1884. DOI: https://doi.org/10.5194/cp-15-1861-2019
68. Hegerl, G.C., Brönnimann, S., Cowan, T., Friedman, A.R., Hawkins, E., Iles, C., Müller, W., Schurer, A. and Undorf, S. Causes of climate change over the historical record. Environmental Research Letters. 2019. №. 14(12). P.1-26. DOI: https://doi.org/10.1088/1748-9326/ab4557
69. Schurer, A.P., Hegerl, G.C., Luterbacher, J., Brönnimann, S., Cowan, T., Tett, S.F.B., Zanchettin, D. and Timmreck, C. Disentangling the causes of the 1816 European year without a summer. Environmental Research Letters. 2019. №. 14(9). P.1-11. DOI: https://doi.org/10.1088/1748-9326/ab3a10
70. Aruffo, E. and Di Carlo, P. Homogenization of instrumental time series of air temperature in Central Italy (1930-2015). Climate Research. 2019. №. 77(3). P.193–204. DOI: https://doi.org/10.3354/cr01552
71. Coll, J.R., van der Schrier, G., Aguilar, E., Rasol, D., Coscarelli, R. and Bishop, A. Data rescue of daily climate station-based observations across Europe. Earth System Science Data. 2019. [preprint] DOI: https://doi.org/10.5194/essd-2019-6
72. Brönnimann, S., Brugnara, Y., Allan, R.J., Brunet, M., Compo, G.P., Crouthamel, R.I., Jones, P.D., Jourdain, S., Luterbacher, J., Siegmund, P., Valente, M.A. and Wilkinson, C.W. A roadmap to climate data rescue services. Geoscience Data Journal. 2018. №. 5(1). P. 28–39. DOI: https://doi.org/10.1002/gdj3.56
73. Brugnara, Y., Auchmann, R., Brönnimann, S., Allan, R.J., Auer, I., Barriendos, M., Bergström, H., Bhend, J., Brázdil, R., Compo, G.P., Cornes, R.C., Dominguez-Castro, F., van Engelen, A.F.V., Filipiak, J., Holopainen, J., Jourdain, S., Kunz, M., Luterbacher, J., Maugeri, M. and Mercalli, L. A collection of sub-daily pressure and temperature observations for the early instrumental period with a focus on the “year without a summer” 1816. Climate of the Past. 2015. №. 11(8). P.1027–1047. DOI: https://doi.org/10.5194/cp-11-1027-2015
74. Rössler, O. and Brönnimann, S. The effect of the Tambora eruption on Swiss flood generation in 1816/1817. Science of The Total Environment. 2018. №. 627, P.1218–1227.
75. Delvaux, C., Ingels, R., Vrábeĺ, V., Journée, M. and Bertrand, C. Quality control and homogenization of the Belgian historical temperature data. International Journal of Climatology. 2018. №. 39(1). P.157–171. DOI: https://doi.org/10.1002/joc.5792
76. Ashcroft, L., Coll, J.R., Gilabert, A., Domonkos, P., Brunet, M., Aguilar, E., Castella, M., Sigro, J., Harris, I., Unden, P. and Jones, P. A rescued dataset of sub-daily meteorological observations for Europe and the southern Mediterranean region, 1877–2012. Earth System Science Data. 2018. №. 10(3). P.1613–1635. DOI: https://doi.org/10.5194/essd-10-1613-2018
77. Xu, C., Wang, J. and Li, Q. A New Method for Temperature Spatial Interpolation Based on Sparse Historical Stations. Journal of Climate. 2018. №. 31(5). P.1757–1770. DOI: https://doi.org/10.1175/JCLI-D-17-0150.1
78. Sonali, P., Nanjundiah, R. and Nagesh Kumar, D. Detection and attribution of climate change signals in South India maximum and minimum temperatures. Climate Research. 2018. №. 76(2). P.145–160. DOI: https://doi.org/10.3354/cr01530
79. Randriamarolaza, L.Y.A., Aguilar, E., Skrynyk, O., Vicente‐Serrano, S.M. and Domínguez‐Castro, F. Indices for daily temperature and precipitation in Madagascar, based on quality‐controlled and homogenized data, 1950–2018. International Journal of Climatology. 2021. DOI: https://doi.org/10.1002/joc.7243
HOW TO CITE
Sidenko, V.P. (2022). Climatic studies of extreme weather conditions, events and phenomena in Ukraine and the world. Hidrolohiia, hidrokhimiia i hidroekolohiia [Hydrology, Hydrochemistry and Hydroecology], 2(64), 53-71 (in Ukrainian, abstr. in English). https://doi.org/10.17721/2306-5680.2022.2.5.